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Motivation 

1990 
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Note: 65db DNL is FAA’s 
designation of significant noise 
exposure. 
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•  Significant reductions in population 
exposure to airport noise have been 
made over the past 25 years 
−  Reduced engine noise 
−  Noise abatement procedures 

•  Further noise footprint reduction 
may be possible through operational 
adjustments  
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Potential for Continued Noise 
Improvements 

•  Advanced operational departure 
procedures 
−  Flight path adjustments 
−  Derated takeoff thrust 
−  Thrust cutback scheduling 

Figure: The Orange County Register  

•  Advanced operational approach 
procedures 
−  Continuous descent/steep approaches 
−  Delayed deceleration approaches 
−  RNAV/RNP approach trajectories 

Figure: D8 Aircraft Concept, from NASA.gov 

•  New Aircraft Configurations 
−  Cleaner Airframes 
−  Engine Noise Shielding Effects 

Figure: FAA.gov 
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Project Goal 

•  Current industry standard noise analysis methods do not fully 
capture noise impacts from aircraft configuration or other 
operational techniques  

•  Traditional aircraft noise analysis assumes that engine noise 
dominates aerodynamic noise 
−  Assumption may have been valid for earlier generation jet engines 

 

Project Goal: to expand analysis capabilities to enable the modeling 
the noise impacts of advanced operational procedures and aircraft 
configuration 
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Current Analysis Methods: Aircraft 
Environmental Design Tool (AEDT) 

•  Industry standard model that 
evaluates aircraft noise impacts in 
the vicinity of airports 
−  Normally used for DNL analysis 

•  Simple physics model 
−  Low resolution 

§  Not intended for high-fidelity single 
event modeling 

−  Considers “Average Annual Day” 
−  Assumes consistent sound energy 

dissipation with distance  
−  Only considers atmospheric noise 

propagation 
−  Does not capture shielding effects 

well 

•  Noise-Power-Distance (NPD) based 

Figure: INM Technical Manual 
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Noise-Power-Distance Approach 

•  Single-event noise exposure 
calculated for each arrival/
departure segment 

•  Requires thrust and 
distance interpolation from 
limited flight test data 

•  Crude accounting for 
different flap, landing gear 
settings 
–  High-power approach curves 

assume dirty landing 
configuration 

–  Ignores velocity effects on 
aerodynamic noise 
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TASOPT and ANOPP Noise 
Modeling Approach 

Transport Aircraft System 
OPTimization (TASOPT) 

Aircraft NOise Prediction 
Program (ANOPP) 

 
 

•  NASA-developed program  
•  Computes far-field engine and airframe 

noise at an observer grid given various 
flight profile and  configuration metrics 

•  Semi-empirical calculations require 
detailed engine/aircraft performance 
inputs 
–  e.g., Engine mass flow, areas, and 

temperatures, airframe geometry, etc. 

•  Models shielding, propagation effects 

 
 
•  Written by Prof. Mark Drela (MIT) 
•  Physics-based optimization program 
•  Based on mission requirements, 

generates an optimal transport aircraft 
design, including: 

•  Engine performance and geometry 
•  Aircraft performance and geometry 
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TASOPT - ANOPP Noise Analysis 
Framework 

ANOPP Control Inputs: 

TASOPT 

ANOPP 

TASOPT Inputs: 
Operating/mission parameters 

Aircraft sizing/performance parameters 
Engine sizing/performance parameters 

Noise contours 
for each observer 
location 

Aircraft/engine 
performance 
& geometry 

Propagation settings 
Observer locations 

 

Flight 
Procedure 
Generator* TASOPT Outputs: 

Thrust, velocity, position, 
gear/flap settings per time 

*Flight Procedure Generator a force-
balance model to determine required 
thrust levels given:  
•  User flight profile requirements  
•  TASOPT aircraft performance 

characteristics 

Flight Procedure: 

Flight Procedure Type: 
Flight Path Angles 

Velocity  
Configuration 
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Noise Certification Data 
Comparison Overview 

•  Effective Perceived Noise Level (EPNL) of known aircraft computed in ANOPP 
−  Results compared to FAA certification noise data (reported in 14 CFR Part 36) for 

those aircraft for validation 

Flyover 

Approach 

Sideline 

•  EPNL reported at 3 observer locations: Flyover, Approach and Sideline 
•  Fight profile requirements: 

•  Flyover: 
•  Thrust: Max TO to altitude 300m, then  
     reduced to maintain 4% climb grad 
•  Velocity: V2+10kt to V2+20kt 

•  Approach: 
•  Thrust: required to maintain 3°  
     glide slope 
•  Velocity: Vref+10kt 
 

•  Sideline: 
•  Thrust: Max TO 
•  Velocity: V2+10kt to V2+20kt 
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Current Validation Results 

•  *Sideline noise error likely due to jet exhaust temperature over-prediction in TASOPT 
(required input for the ANOPP jet noise calculation) for max thrust conditions 

•  Calculated sideline noise error is reduced to within +/- 1 dB EPNL for each aircraft 
with an 8% reduction in TASOPT outputted jet exhaust temperatures 

  

ANOPP 
Calculated 
Effective 

Perceived 
Noise Levels 

(dB) 

FAA 
Certification 
Noise Data 

(dB) 

Error 
(dB) 

Boeing 737-800 Flyover 87 86.7 +0.3 
TO/AP Wt: 172300/146300 lbs Approach 96.11 96.8 -0.69 

Engine: CFM56-7B26 Sideline* 97.61 93.1 +4.51 

Boeing 777-300 Flyover 94.87 94.2 +0.61 
TO/AP Wt: 636100/524000 lbs Approach 101.3 100.4 +0.9 

Engine: RR Trent 892 Sideline* 99.88 96.9 +2.98 

Embraer 195 Flyover  87.46 86.5 +0.96  
TO/AP Wt: 111970/99200 lbs Approach  92.55 92.8  -0.25 

Engine: CF34-10E5 Sideline*  98.72 91.8  +6.92 

Flyover 

Approach 

Sideline 
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•  Typical takeoff procedure 
uses constant takeoff thrust 
throughout initial climb 
segment 
−  Safety & efficiency benefits 

•  Thrust cutback after takeoff 
during initial climb can be 
used to reduce noise for 
nearby communities 
−  Specific location of cutback 

determines overall noise 
impact of procedure 
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Distance from Start of Takeoff  

Variation of Departure Flight Profile 
with Thrust Cutback Location 

Procedure 
with 
Cutback 

No Cutback 
Takeoff 
Procedure 
 

Example Application: 
Thrust Cutback Location on Departure 
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Impact of Thrust Cutback Location 
on Single-Observer Departure Noise 
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Impact of Thrust Cutback Location on 
Departure Noise Contour Geometry 

Boeing 737-800 Departure Profiles 
Takeoff Weight: 172,300 lbs 

Engine: CFM56-7B26 
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Example Application: 
Delayed Deceleration Approach 

•  In conventional approaches 
aircraft decelerate early in 
the approach  
−  Often commanded by air 

traffic control for spacing 
traffic flows 

•  In DDA approaches, initial 
flap speed velocity held as 
long as possible during 
approach to lower drag and 
thrust requirements 
−  Lower thrust levels and 

reduce engine noise 
−  Higher velocities increase 

airframe noise 

Conventional vs. DDA Approach 
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Delayed Deceleration Approach Profile: 
Glideslope Intercept from Level Flight 

Flaps 30 + Gear 
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Boeing 737-800 Flight Profile 
Landing Weight: 146,300 lbs 

Engine: CFM56-7B26 
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Impact of Delayed Deceleration 
Approach on Noise Contour Geometry 

Boeing 737-800 Flight Profile 
Landing Weight: 146,300 lbs 

Engine: CFM56-7B26 
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Example Application: Modeling 
New Aircraft Configurations 

Figure: D8 Aircraft Concept, from Aurora Flight Sciences 

Figure: Boeing 737-800, from Boeing.com 

•  New aircraft configurations, compared to existing baseline aircraft 
with the same passenger number and range requirements, may 
feature: 
−  Cleaner, lighter airframes, engine noise shielding 
−  Reductions in fuel burn, emissions, community noise  
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Boeing 737-800 vs. D8.2 Concept  
Aircraft Approach Profile 
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Boeing 737-800 vs. D8.2 Concept 
Aircraft: Noise Contour Comparison 

D8.2 

737-800 

Preliminary 

Boeing 737-800 vs. D8.2 Concept 
Landing Weight: 146,300 lbs (B738) vs. 102,000 lbs (D8.2) 
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Moving Forward 

•  Continue developing flight procedure generator 

•  Continue validating the TASOPT/ANOPP program noise results 
with FAA data for more aircraft types 

•  Use TASOPT/ANOPP program for computation of noise for 
more aircraft types and operational procedures 
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TASOPT Calculation Flow 

Engine sizing/
performance 
parameters 

Fuselage/Wing/Tails sizing 
and weight computations Operating/mission 

parameters 

Aircraft sizing/performance 
parameters 

Drag build-up 

Engine sizing, weight, 
performance computations 

Trajectory computations 

Mission fuel computations 

Final weight computation 

TASOPT Outputs: 
Aircraft Performance 
Airframe geometry 

Engine performance  
Engine geometry 

TASOPT Inputs (user defined): TASOPT Calculation Flow: 
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ANOPP Calculation Flow 

Engine 
Performance 

Engine 
Geometry 

Aircraft 
Performance 

Airframe 
Geometry 

Flight profile definition 

Source to observer geometry 

Engine and airframe 
noise computations 

Propagation and 
ground effects 

Wing shielding 
effects 

ANOPP Outputs: Noise contours for each observer location 

Thrust, 
velocity, 
position, 
gear/flap 
settings  

Propagation 
Settings 

Observer 
array 

ANOPP Calculation Flow: TASOPT  
Outputs: 

Flight 
Profile 

Generator: 

User Inputs: 
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Flight Profile Generator: 
Detailed Methodology 

•  Goal: to generate position, velocity,  
and thrust of an aircraft flight  
profile from a combination of user  
specified requirements at each  
profile segment, including: 
•  Flap and gear settings: 
•  Segment end velocity: 
•  Deceleration: 
•  Thrust:   
•  Glideslope: 
•  Segment end position:         or 

•  The user initially specifies:  
•  Aircraft weight, wing area, air density: 
•  Drag coefficients: 
•  Initial position, altitude, velocity: 
•  Number of profile segments 
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Flight Profile Generator: 
Computation Methodology 

γ
a,Vend,

xend, zend,

T
δ flap,δgear

xstart, zstart,Vstartxend, zend,Vend

•  At each segment: 

 

 
   

 
 
 
 
 
 
 
 
•                          of one segment become           of the next segment 

a =
F∑
m

=
T +W sin(γ)−D

W / g

(Vend )
2 − (Vstart )

2

2a
=
(xend − xstart )
cos(γ )

=
(zend − zstart )
sin(γ )

D =
1
2
ρV 2SCD (δ flap,δgear,CL ) CL =

W cos(γ)
1
2
ρV 2S

         The user specifies:          The generator computes: 
 

                   remaining three  
   One of:                  or               variables not 
                     yet specified,  
    & two of:      or           using the equations 
                     below: 
                                     

Segment sign conventions; negative value of       
indicates climb   

γ
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Flight Profile Generator: 
Computation Methodology 

•  To get thrust (or reverse thrust ) profile    (         ) on the runway, the 
user specifies (with       the velocity upon liftoff or upon touchdown): 
•  Takeoff/Landing roll length: 
•  Runway coefficient of friction: 

 
•    Lastly, the user specifies the   

the lateral aircraft position   
profile        with  
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Sample Approach Profile: Boeing 737-800 
including Landing Roll 

s = x2 + z2

T

D =
1
2
ρV 2SCD (δ flap,δgear,CL )

Landing Roll 

Takeoff Roll 

Vstart
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Drag Coefficients for Flight 
Profile Generator 

•  Drag coefficients for existing aircraft currently obtained from 
Base of Aircraft DAta (BADA)  
•  BADA provides aerodynamic drag coefficients for various flap and 

gear configurations of supported aircraft types: 

  

CD =CD0 (δ flap,δgear )+CD2 (δ flap )*(CL )
2
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Delayed Deceleration Approach Profile: 
Continuous 3-degree Glideslope 
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Impact of Delayed Deceleration on 
Noise Contour 

Boeing 737-800 Flight Profile 
Landing Weight: 146,300 lbs 

Engine: CFM56-7B26 
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